SM3110 - First Exam

Feb 19, 1997

1. (15 points) Let A be a 2×2 real-valued constant matrix, one of whose eigenvalues is 1-2i with the corresponding eigenvector

$$\left[\begin{array}{c}1\\1-i\end{array}\right].$$

Write down the general solution to the system of differential equations $\mathbf{x}' = A\mathbf{x}$.

2. (15 points) Let f be defined by

$$f(x) = \begin{cases} -2 & \text{if } 0 \le x < 3\\ 1 & \text{if } 3 \le x < 4. \end{cases}$$

Determine the first two nonzero terms of the Fourier Sine series of f.

3. (15 points) Let $f(x,y) = -x^2y^3 + 2x^3y^2$.

- (a) Find the gradient of f at P = (1, 2).
- (b) Find the directional derivative of f at P=(1,2) in the direction of $\mathbf{e}=\langle 1,-1\rangle$.
- (c) Find the direction of maximum ascent at P = (-1, 3).
- 4. (10 points) Let S be a sphere of radius 3. Find a normal vector to S at 60 degrees latitude and 30 degrees longitude.
- 5. (15 points) Let $\mathbf{v} = \langle \frac{ay}{\sqrt{x^2 + y^2}}, \frac{bx}{\sqrt{x^2 + y^2}} \rangle$ be the velocity field of a fluid, where a and b are constants. Find all nonzero values of these constants for which \mathbf{v} is incompressible.
- 6. (30 points) Let $\mathbf{v} = \langle 3y^2 x^2, x^2 + 2xy \rangle$.
 - (a) Does \mathbf{v} have a stream function? If no, explain why not. If yes, determine it.
 - (b) Consider the fluid particle that is located at (1, -1) at time 0. Write down the *Mathematica* commands you would use to plot the graph of the path of this particle for 0 < t < 3.

Bonus Points

Let S be a sphere of radius 6000 kilometers.

- 1. (10 points) State a parametrization of a typical circle that passes through both poles.
- 2. (10 points) State a parametrization of the circle located on the sphere and in the plane z = 3000.